Compass Work
Magnetic Compass
Construction
of a liquid card magnetic compass
Keeping the
card practically horizontal in all latitudes
The weight of the card and magnets is supported partly
by the buoyancy and partly by an iridium point fitting into a sapphire bearing.
The
point of support is above the centre of gravity of the card, so that the card
remains substantially horizontal in all latitudes.
Composition
of the liquid and explains how allowance is made for changes in volume of
the liquid
The bowl is filled with a mixture of distilled water
and pure ethyl alcohol thereby making the mixture to have the following
properties:
· Low
freezing point about -30°C
· Small
coefficient of expansion
· Does not discolour the card
· Low
relative density about 0.93
The top of the bowl is of transparent glass. The
bottom is of frosted glass to diffuse the light coming from an electric bulb
below. This liquid has a small coefficient of expansion, but since its volume
changes slightly with change of temperature, a flexible corrugated plate or
expansion chamber is fitted to the bowl.
Removing
Air Bubbles
Air bubbles often appear in a compass bowl. If the
bubble is quite small it is preferred that it be left alone. However if the
bubble is too large then the frictionless movement of the card would be
affected, thus the need to remove the air bubble or at least to reduce it to
quite a small one.
To remove the air bubble, first the gimbals are locked
with the swivel plates provided. Next the bowl is inverted and the filling hole
is unscrewed. A syringe is filled with distilled water and slowly the water is
injected into the bowl. An estimate of the bubble size would give an indication
of the extra fluid that has to be injected, if the same is not possible then
the bowl has to be tilted in the inverted condition such that the highest point
is the filling hole, this would drive the air space (bubble to the filling
hole. Once the water is injected to satisfaction the filling hole is screwed back,
and the bowl returned to normal position, and the gimbals unlocked.
Checking that the card is turning freely on its pivot.
The compass card may be tested for pivot friction by
deflecting the compass cards a few degrees. If the pivot is in good condition
the card should return to and settle in its original position with no sign of
sticking or jerkiness.
Marking of
the lubber line and its purpose
LUBBER’S ( LUBBER (clumsy
fellow) LINE: The mark on the binnacle, which is brought to meet the desired
point on the compass card.
The lubber’s line marks the direction of the fore and
aft line of the ship.
So called because a ‘real’
seaman can do without it.
Binnacle
and the arrangement of correcting devices provided
The binnacle is a cylindrical container made of
teakwood. No magnetic material is used in the construction. The compass bowl is
slung inside the top portion of the binnacle. The middle portion is accessible
by a door and contains an electric bulb. Light from this bulb passes upwards
through a small slot at the bottom of the compass bowl to illuminate the
compass card from below.
A mechanical shutter can control the intensity of the
light. The number of magnets in the bucket, the bucket’s position with
reference to the compass card and the number of hard iron magnets depend on the
disturbing forces. A qualified “compass adjuster” can calculate this force
after conducting certain tests.
Once the compass has been adjusted, the magnets should
not be disturbed and the doors giving access to tile corrector magnets should
be kept locked.
‘Deviation’
and how it is named
Deviation is defined as deflection right or left of
the magnetic meridian.
On a lifeboat (fibreglass)
the lifeboat compass magnet is affected only by the Earth’s magnetic field. As
such the LB’s course would be the magnetic course – affected only by the
variation caused by the earth’s magnetism.
And the North of the LB compass would be the Magnetic
North.
For a ship’s magnetic compass however the compass
magnet is affected by the Earth’s magnetic field as well as by the magnetic
field caused by the magnetism of the ship’s hull. The ship’s hull becomes a
huge magnet due to the repeated high current used in fabricating the ship.
Thus the ship’s magnetic compass would show a
different North than either the True North or the Magnetic North – this is
called compass North. The difference between the Magnetic North and the Compass
North is known as ‘Deviation’. If the compass North is west of the Magnetic
North then the deviation is termed ‘West’ and if the compass north is to the
East of the Magnetic North then the deviation is termed as ‘East’. is termed as ‘East’.
Care in the
placing of portable items of magnetic material, including spare corrector
magnets, or electrical equipment in the vicinity of compasses
Since the magnetic compass is affected by magnetic
fields, all Ferro magnetic material if brought close to a magnetic compass will
slowly be magnetised (over a period of time), this
material may later exert a magnetic field on the compass magnet.
Similarly any electrical wiring will produce a electrical field which will exert its influence on the
magnet of the compass. This is the reason all electrical/electronic bridge
equipment like Radar’s electrical/electronic bridge equipment like Radar’s etc
come with a ‘compass safe distance’ marked on them.
Need for
regular checking of the compass error
Due to change in latitude, course and speed the
compass error should be taken at regular intervals.
Compass
error should be checked after a major alteration of course
After alteration of course the gyro as well as the
magnetic compass error should be taken. This since both are affected
differently, errors on different headings should be taken.
Regular
comparisons of standard compass, steering compass and gyrocompass should be
made
Comparisons between magnetic compass and gyrocompass
should be made once a watch and after every alteration of course.
All the repeaters should be compared with the Master
gyrocompass and the Magnetic compass should be compared with the Master
Gyrocompass.
So that while taking bearings the error if any may be
applied.
Since the gyro is based on the electrical current fed
to the gyroscope any earthing of the supply would
result in the gyro spinning less than at optimum speed and thus errors may
creep in.
Also the synchro motors for the repeaters may sometimes slow down
resulting in errors of the repeaters.
The sphere does not give any warning before it slows
down so it is always better to compare before the watch and after every
alteration to a new course.
Gyro
Compass may be used to approximate the error of the magnetic compass
Since the gyro compass basically works on the
principle of the torque required to tilt a spinning wheel from its position of
rest and that the earth’s tilt does not vary sufficiently in a short time
period, the gyro compass is more stable and is less affected by local magnetism
as well as the ships inherent magnetism. Whereas the magnetic
compass is affected by the twin factors of variation and deviation.
Variation being sufficiently constant over a short time interval change in
distance the deviation is the major factor in causing error on various
headings. Thus a magnetic compass may be compared with a gyro compass to arrive
at a approximate of the error.