Load Lines | Rudder & Propeller |
Ship Construction
Rudder and Propellers
The shape of a rudder plays an important part in its
efficiency. The area of the rudder is approximately 2% of the product of the
length of the ship and the designed draught.
Since the vertical dimensions of the rudder are
somewhat restricted due to the area constraint as mentioned above, the fore and
aft dimensions are increased.
Again due to this increased dimensions the torque
necessary to turn this rudder is overcome by fitting balanced or semi balanced
rudders. Such a rudder has about 1/3rd of the rudder area forward of
the turning axis.
An ideal rudder is one where the centre of pressure
and the turning axis coincide for all angles of the helm.
An unbalanced rudder consists of a number of pintles and gudgeons, the top pintle being the locking pintle which prevents any vertical movement in the rudder and the pintle And gudgeon taking the weight of the rudder.
Principle of screw propulsion
Some people still occasionally refer to the propeller
as the “airscrew”, a very accurate and descriptive term that reflects the basic
design and function of the propeller.
Leonardo da Vinci had proposed the concept of a
“helical screw” to power a machine vertically into the air.
The propeller uses that principle to provide
propulsion through the air, much like a threaded screw advances through a solid
medium, with some notable exceptions, primarily related to the loss of forward
movement because the medium is not solid.
Nonetheless, the propeller is similar to a screw in
some common features. First, the pitch
of a propeller is the theoretical distance the propeller would move forward in
one revolution (similar to a screw) and conceptually is the same as the pitch
of a screw, namely the distance between threads if the propeller were a
continuous helix.
The second feature that relates to its screw design is
that the angle of the blade changes along the radius, so that close to the hub,
the angle is very steep and at the tip of the blade it is much more shallow.
From a practical standpoint, this means that unless
the pitch for a given propeller is known, it requires a trigonometric
calculation to determine the pitch empirically.
Thirdly, just as screws come in left hand and right
hand threads, propellers have the same designation. When facing the
water/ air flow if the top of the propeller moves to the right, it is
designated “Right Hand” and if to the left it is “Left Hand”. (As
viewed from the front a right hand propeller turns counterclockwise and a left
hand propeller turns clockwise.) Propellers will frequently be stamped as
“RH” or “LH”.
Propeller and some definitions
Boss or Hub
The central portion of a
screw propeller to which the blades are attached and through which the driving
shaft is fitted.
Rake
The point displacement, from
the propeller plane to the generator line in the direction of the shaft axis. Aft
displacement is considered positive rake (see Figure 2). The rake
at the blade tip or the rake angle are generally used as measures of the
rake. The strength criteria of some classification societies use other
definitions for rake.
Skew
The displacement of any blade section along the pitch
helix measured from the generator line to the reference point of the section
(see Figure 2). Positive skew- back is opposite to the direction of ahead motion of the blade section. The skew definition
pertains to midchord skew, unless specified
otherwise.
Back (of
blade)
The side of a propeller
blade which faces generally in the direction of ahead motion. This side
of the blade is also known as the suction side of the blade because the average
pressure there is lower than the pressure on the face of the blade during
normal ahead operation.
Tip
The maximum reach of the
blade from the center of the propeller hub. It
separates the leading edge from the trailing edge.
Radius
Radius of any point on a
propeller.
Pitch
The pitch
of a propeller is the theoretical distance the propeller would move forward in
one revolution (similar to a screw) and conceptually is the same as the pitch
of a screw, namely the distance between threads if the propeller were a
screw. For this reason, propellers will frequently be stamped with a
designation such as “D 2550/P2610”. This means that the diameter (in this case
length of propeller or thickness of a screw) is 2.550 meters, and the
pitch is 2.610 meters, so that in a mathematical sense, one revolution of this
propeller would move it forward a distance of 2.610 meters.
Comparing
fixed‑pitch with controllable‑pitch propellers
Advantages
of a controllable pitch propeller
Allow greater manoeuvrability
Allow engines to operate at optimum revs
Removes need for reversing engines
Reduced size of Air Start Compressors and receivers
Improves propulsion efficiency at lower loads
Disadvantages
Greater initial cost
Increased complexity and maintenance requirements
Increase stern tube loading due to increase weight of
assembly, the stern tube bearing diameter is larger to accept the larger
diameter shaft required to allow room for Oil Tube
Lower propulsive efficiency at maximum continuous
rating
Prop shaft must be removed outboard requiring rudder
to be removed for all prop maintenance.
Increased risk of pollution due to leak seals
Sketches
the arrangement of an oil‑lubricated sterntube
and tailshaft
Stern tubes are fitted to provide a bearing for the
tail end shaft and to enable a watertight gland to be fitted at an accessible
position.
The tube is usually constructed of cast steel with a
flange at its forward end and a thread at the after end. It is inserted from
forward and this end is bolted over packing to the after peak bulkhead. A large
nut is placed over the thread at the after end, tightened and secured to the
propeller post.
In an oil lubricated stern
tube the bearings are made of white metal. A gland is fitted to each end of the
stern tube and since the after end gland will not be accessible during sea
service it is made self adjusting. The flange shown is attached to the
propeller so that it rotates with the shaft and oil tightness is obtained by a
rotating gland.
States how
the propeller is attached to the tailshaft
The after end of the tail end shaft is tapered to
receive the propeller boss and a key is provided to transfer the torque from
the shaft to the propeller. A nut fitted with a locking plate secures the
propeller in position and as an additional safeguard it is fitted with a left
hand thread in association with a right hand ed propeller or vice versa.
To remove the propeller and the tail end shaft the
propeller should be slung on special eyes provide on the shell for this purpose
– the rope guards removed – and the propeller nut slackened.
The propeller is then started from the shaft by
driving steel wedges between the boss and the propeller post. When it is free
the nut is removed.
Cross‑section of a shaft tunnel